LEI DE AMPÈRE

Introdução

A lei de Ampère é análoga à lei de Gauss para o campo elétrico. Essa lei foi proposta originalmente por André-Marie Ampère no século XVIII e diz que "a circulação do campo magnético ao longo de um percurso fechado é igual à permeabilidade magnética no vácuo vezes a corrente total que atravessa a área envolvida", dada pela seguinte integral de linha:

$$\oint B. \, dl = \mu_0 I \tag{1}$$

A lei de Ampère é útil quando envolve situações com simetria que permitem o cálculo da integral, tais como o cálculo do campo de um fio condutor longo e retilíneo, campo no interior de um cilindro condutor, campo de um solenoide linear, campo de um solenoide toroidal, entre outros.

Um solenoide é constituído por um enrolamento como uma hélice cilíndrica com as espiras muito próximas (

Figura 1). Todas as espiras conduzem a mesma corrente *I*, e o campo magnético total *B* em cada ponto é a soma vetorial dos campos produzidos pelas espiras individuais. No seu interior, os campos se somam e o campo total é aproximadamente constante e uniforme. No seu exterior, os campos se cancelam, e o campo é aproximadamente nulo.

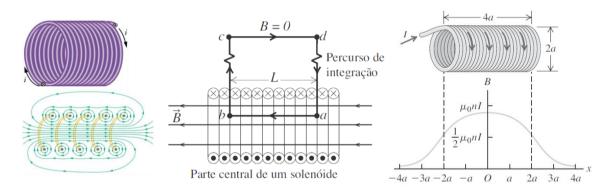


Figura 1: Campo magnético ao longo do eixo de um solenoide, cujo comprimento é igual a quatro vezes o seu raio (Halliday; Sears & Zemansky).

Pela figura anterior, o número de espiras para um dado comprimento L é igual a N. Cada uma dessas espiras passa uma vez pelo retângulo abcd e a corrente total que passa pelo retângulo abcd é $I_T = NI$

De acordo com a lei de Ampère, o módulo do campo magnético para um solenoide longo é dado por:

$$B = \mu_0 \frac{N}{I} I \tag{2}$$

onde μ_0 = permeabilidade magnética do vácuo = $4\pi.10^{-7}$ (T.m/A), I é a corrente elétrica que passa pelo solenoide e N é o número de espiras em um dado comprimento L.

Entretanto, o campo só é uniforme e constante na porção central do solenoide, pois os solenoides reais têm comprimento limitado e os campos próximos os limites do solenoide sofrem um efeito de borda, região na qual o campo cai do valor do campo magnético no interior do solenoide até o campo magnético nulo no exterior do solenoide. O comportamento do campo magnético ao longo de um solenoide, incluindo a região de bordas, é representado na Figura 2 a seguir. Nesta figura, o valor do campo magnético em cada ponto foi dividido pelo valor do campo máximo (B), no centro do solenoide (Bo), e o comprimento do solenoide pode ser estimado pela largura a meia altura, conforme indicado no gráfico.

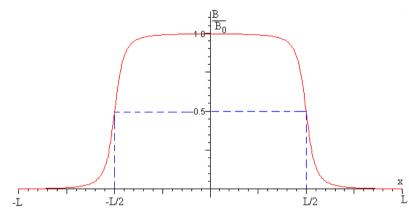


Figura 2: Gráfico da razão entre o campo magnético (B) e o campo magnético máximo (B₀) no interior de um solenoide.

Atividade experimental

1. Objetivos

O objetivo desta atividade prática é contribuir para a compreensão da Lei de Ampère.

2. Materiais e Métodos

Os materiais necessários para realização deste experimento são:

- > Fonte de tensão elétrica contínua;
- Cabos:
- Teslâmetro:
- Solenoide com 300 espiras;
- Trena;

> Suportes diversos.

Roteiro Experimental:

1º Parte: Campo magnético central com diferentes correntes

- i. Meça o comprimento do solenoide e determine seu centro;
- ii. Insira a haste do teslâmetro no interior do solenoide até que a extremidade coincida com o centro do solenoide. Essa será a posição x = 0;
- iii. Meça o valor campo magnético no centro do solenoide para 10 valores de corrente distintos, menores do que 1,5 A, para determinar o valor de corrente. Use o display da fonte como indicador da corrente.

2ª Parte: Campo magnético ao longo do eixo x

- i. Com o teslâmetro posicionado inicialmente na posição x = 0, ligue a fonte de tensão e ajuste a corrente para 1 A;
- ii. Meça o valor do campo magnético na posição inicial e varie a posição da extremidade da haste com relação ao centro do solenoide, medindo o campo em cada posição, até que tenha sido possível obter os dados necessários para construir um gráfico como o da Figura 2.

3. Tabela de Dados

Embora os dados sejam obtidos de forma automática, os alunos devem montar tabelas semelhantes às apresentadas a seguir para mostrar os dados no relatório.

Tabela 1: Valores de campos magnéticos no centro do solenoide para diferentes correntes.

Campo magnético central (x=0)								
	Corrente	$\sigma_{\text{bcorrente}}$	В	$\sigma_{ ext{bcampo}}$				
	(A)	(A)	(mT)	(mT)				
i ₁								
i ₂								
i ₃								
i ₄								
i ₅								
i ₆								
i ₇								
i ₈								
i ₉								
i ₁₀								

Tabela 2: Valores de campos magnéticos ao longo do eixo central do solenoide.

Campo magnético ao longo do eixo x								
Corrente =								
Deslocamento direção positiva			Deslocamento direção negativa					
Posição	В	σ_{b}	Posição	В	σ_{b}			
(cm)	(mT)	(mT)	(cm)	(mT)	(mT)			
0,0			0,0					
1,0			-1,0					
2,0			-2,0					
3,0			-3,0					
4,0			-4,0					
5,0			-5,0					
6,0			-6,0					
7,0			-7,0					
7,5			-7,5					
8,0			-8,0					
8,5			-8,5					
9,0			-9,0					
9,5			-9,5					
10,0			-10,0					
10,5			-10,5					
11,0			-11,0					
11,5			-11,5					
12,0			-12,0					
12,5			-12,5					
13,0			-13,0					
13,5			-13,5					
14,0			-14,0					

4. Discussão

1º Parte:

- 1. Construa o gráfico de B versus I e determine μ_0 com incerteza (propagada) a partir do coeficiente angular da reta, utilizando o valor de L determinado com a régua e sabendo que o número de espiras do solenoide utilizado era 300.
- 2. Compare o valor do item anterior com a permeabilidade magnética do vácuo ($4\pi.10^{-7}$ T.m/A), mais uma vez determinando um erro relativo em percentual.

2ª Parte:

- 1. Construa o gráfico de B/B_0 versus a posição e verifique sua similaridade com o gráfico da Figura 2. Note que B_0 é o campo em x = 0 (valor máximo).
- 2. Determine o comprimento L do solenoide a partir do gráfico e compare com o valor medido em sala.